Information on Result #701347

Linear OA(725, 60, F7, 13) (dual of [60, 35, 14]-code), using construction XX applied to C1 = C({0,1,2,3,4,5,6,27,34,41}), C2 = C([0,9]), C3 = C1 + C2 = C([0,6]), and C∩ = C1 ∩ C2 = C({0,1,2,3,4,5,6,8,9,27,34,41}) based on
  1. linear OA(719, 48, F7, 11) (dual of [48, 29, 12]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,27,34,41}, and minimum distance d ≥ |{−3,−2,…,7}|+1 = 12 (BCH-bound) [i]
  2. linear OA(716, 48, F7, 10) (dual of [48, 32, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
  3. linear OA(722, 48, F7, 13) (dual of [48, 26, 14]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,27,34,41}, and minimum distance d ≥ |{−3,−2,…,9}|+1 = 14 (BCH-bound) [i]
  4. linear OA(713, 48, F7, 8) (dual of [48, 35, 9]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 9 [i]
  5. linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
  6. linear OA(71, 4, F7, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(725, 30, F7, 2, 13) (dual of [(30, 2), 35, 14]-NRT-code) [i]OOA Folding