Information on Result #701398

Linear OA(737, 64, F7, 20) (dual of [64, 27, 21]-code), using construction XX applied to C1 = C({1,2,5,6,8,9,10,11,12,13,16,17,18,19}), C2 = C([0,16]), C3 = C1 + C2 = C({1,2,5,6,8,9,10,11,12,13,16}), and C∩ = C1 ∩ C2 = C([0,19]) based on
  1. linear OA(726, 48, F7, 15) (dual of [48, 22, 16]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,5,6,8,9,10,11,12,13,16,17,18,19}, and minimum distance d ≥ |{5,6,…,19}|+1 = 16 (BCH-bound) [i]
  2. linear OA(725, 48, F7, 17) (dual of [48, 23, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(731, 48, F7, 20) (dual of [48, 17, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(720, 48, F7, 12) (dual of [48, 28, 13]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,5,6,8,9,10,11,12,13,16}, and minimum distance d ≥ |{5,6,…,16}|+1 = 13 (BCH-bound) [i]
  5. linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
  6. linear OA(74, 8, F7, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(737, 32, F7, 2, 20) (dual of [(32, 2), 27, 21]-NRT-code) [i]OOA Folding
2Linear OOA(737, 21, F7, 3, 20) (dual of [(21, 3), 26, 21]-NRT-code) [i]