Information on Result #701438

Linear OA(751, 73, F7, 28) (dual of [73, 22, 29]-code), using construction XX applied to C1 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,16,20,27,33,34,40,41}), C2 = C([0,18]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,20,27,33,34,40,41}) based on
  1. linear OA(736, 48, F7, 26) (dual of [48, 12, 27]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,20,27,33,34,40,41}, and minimum distance d ≥ |{−9,−8,…,16}|+1 = 27 (BCH-bound) [i]
  2. linear OA(729, 48, F7, 19) (dual of [48, 19, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(740, 48, F7, 28) (dual of [48, 8, 29]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,20,27,33,34,40,41}, and minimum distance d ≥ |{−9,−8,…,18}|+1 = 29 (BCH-bound) [i]
  4. linear OA(725, 48, F7, 17) (dual of [48, 23, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(710, 20, F7, 8) (dual of [20, 10, 9]-code), using
  6. linear OA(71, 5, F7, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(751, 24, F7, 3, 28) (dual of [(24, 3), 21, 29]-NRT-code) [i]OOA Folding