Information on Result #701447

Linear OA(750, 71, F7, 28) (dual of [71, 21, 29]-code), using construction XX applied to C1 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,20,27,34,41}), C2 = C([0,19]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,27,34,41}) based on
  1. linear OA(735, 48, F7, 25) (dual of [48, 13, 26]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,20,27,34,41}, and minimum distance d ≥ |{−7,−6,…,17}|+1 = 26 (BCH-bound) [i]
  2. linear OA(731, 48, F7, 20) (dual of [48, 17, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  3. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,27,34,41}, and minimum distance d ≥ |{−7,−6,…,23}|+1 = 32 (BCH-bound) [i]
  4. linear OA(727, 48, F7, 18) (dual of [48, 21, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(79, 17, F7, 7) (dual of [17, 8, 8]-code), using
  6. linear OA(72, 6, F7, 2) (dual of [6, 4, 3]-code or 6-arc in PG(1,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.