Information on Result #701457

Linear OA(746, 66, F7, 27) (dual of [66, 20, 28]-code), using construction XX applied to C1 = C({1,2,3,6,8,9,10,11,12,13,16,17,18,19,20,24,25,26}), C2 = C([0,20]), C3 = C1 + C2 = C({1,2,3,6,8,9,10,11,12,13,16,17,18,19,20}), and C∩ = C1 ∩ C2 = C([0,26]) based on
  1. linear OA(733, 48, F7, 21) (dual of [48, 15, 22]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,3,6,8,9,10,11,12,13,16,17,18,19,20,24,25,26}, and minimum distance d ≥ |{6,7,…,26}|+1 = 22 (BCH-bound) [i]
  2. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(738, 48, F7, 27) (dual of [48, 10, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  4. linear OA(728, 48, F7, 18) (dual of [48, 20, 19]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,3,6,8,9,10,11,12,13,16,17,18,19,20}, and minimum distance d ≥ |{6,7,…,23}|+1 = 19 (BCH-bound) [i]
  5. linear OA(72, 7, F7, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,7)), using
  6. linear OA(76, 11, F7, 5) (dual of [11, 5, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(746, 33, F7, 2, 27) (dual of [(33, 2), 20, 28]-NRT-code) [i]OOA Folding
2Linear OOA(746, 22, F7, 3, 27) (dual of [(22, 3), 20, 28]-NRT-code) [i]