Information on Result #701475

Linear OA(740, 57, F7, 26) (dual of [57, 17, 27]-code), using construction XX applied to C1 = C({1,2,3,5,6,8,9,10,11,12,13,16,17,18,19,20,24,25}), C2 = C([0,24]), C3 = C1 + C2 = C({1,2,3,5,6,8,9,10,11,12,13,16,17,18,19,20,24}), and C∩ = C1 ∩ C2 = C([0,25]) based on
  1. linear OA(733, 48, F7, 21) (dual of [48, 15, 22]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,3,5,6,8,9,10,11,12,13,16,17,18,19,20,24,25}, and minimum distance d ≥ |{5,6,…,25}|+1 = 22 (BCH-bound) [i]
  2. linear OA(734, 48, F7, 25) (dual of [48, 14, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(736, 48, F7, 26) (dual of [48, 12, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(731, 48, F7, 20) (dual of [48, 17, 21]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,3,5,6,8,9,10,11,12,13,16,17,18,19,20,24}, and minimum distance d ≥ |{5,6,…,24}|+1 = 21 (BCH-bound) [i]
  5. linear OA(70, 2, F7, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(74, 7, F7, 4) (dual of [7, 3, 5]-code or 7-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(740, 19, F7, 3, 26) (dual of [(19, 3), 17, 27]-NRT-code) [i]OOA Folding