Information on Result #701490

Linear OA(752, 66, F7, 34) (dual of [66, 14, 35]-code), using construction XX applied to C1 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,24,27,34,40,41}), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C({0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,24,25,27,34,40,41}) based on
  1. linear OA(741, 48, F7, 33) (dual of [48, 7, 34]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,24,27,34,40,41}, and minimum distance d ≥ |{−8,−7,…,24}|+1 = 34 (BCH-bound) [i]
  2. linear OA(736, 48, F7, 26) (dual of [48, 12, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(743, 48, F7, 34) (dual of [48, 5, 35]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {0,1,2,3,4,5,6,8,9,10,11,12,13,16,17,18,19,20,24,25,27,34,40,41}, and minimum distance d ≥ |{−8,−7,…,25}|+1 = 35 (BCH-bound) [i]
  4. linear OA(734, 48, F7, 25) (dual of [48, 14, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(79, 16, F7, 7) (dual of [16, 7, 8]-code), using
  6. linear OA(70, 2, F7, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(752, 33, F7, 2, 34) (dual of [(33, 2), 14, 35]-NRT-code) [i]OOA Folding
2Linear OOA(752, 22, F7, 3, 34) (dual of [(22, 3), 14, 35]-NRT-code) [i]