Information on Result #701510

Linear OA(753, 64, F7, 35) (dual of [64, 11, 36]-code), using construction XX applied to C1 = C({1,2,3,4,8,9,10,11,12,13,16,17,18,19,20,24,25,26,27,32,33,34}), C2 = C([1,27]), C3 = C1 + C2 = C({1,2,3,4,8,9,10,11,12,13,16,17,18,19,20,24,25,26,27}), and C∩ = C1 ∩ C2 = C([1,34]) based on
  1. linear OA(740, 48, F7, 28) (dual of [48, 8, 29]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,3,4,8,9,10,11,12,13,16,17,18,19,20,24,25,26,27,32,33,34}, and minimum distance d ≥ |{7,8,…,34}|+1 = 29 (BCH-bound) [i]
  2. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(735, 48, F7, 25) (dual of [48, 13, 26]-code), using the primitive cyclic code C(A) with length 48 = 72−1, defining set A = {1,2,3,4,8,9,10,11,12,13,16,17,18,19,20,24,25,26,27}, and minimum distance d ≥ |{7,8,…,31}|+1 = 26 (BCH-bound) [i]
  5. linear OA(73, 8, F7, 3) (dual of [8, 5, 4]-code or 8-arc in PG(2,7) or 8-cap in PG(2,7)), using
  6. linear OA(76, 8, F7, 6) (dual of [8, 2, 7]-code or 8-arc in PG(5,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.