Information on Result #701593

Linear OA(887, 97, F8, 61) (dual of [97, 10, 62]-code), using construction XX applied to C1 = C({1,2,3,4,5,6,7,11,12,13,14,17,18,21,25,26,27,33,34,35,36,42,43}), C2 = C({1,2,3,4,5,6,7,9,11,12,13,14,17,18,25,26,27,33,34,35,36,42}), C3 = C1 + C2 = C({1,2,3,4,5,6,7,11,12,13,14,17,18,25,26,27,33,34,35,36,42}), and C∩ = C1 ∩ C2 = C([1,43]) based on
  1. linear OA(869, 73, F8, 55) (dual of [73, 4, 56]-code), using the cyclic code C(A) with length 73 | 83−1, defining set A = {1,2,3,4,5,6,7,11,12,13,14,17,18,21,25,26,27,33,34,35,36,42,43}, and minimum distance d ≥ |{10,11,…,64}|+1 = 56 (BCH-bound) [i]
  2. linear OA(866, 73, F8, 54) (dual of [73, 7, 55]-code), using the cyclic code C(A) with length 73 | 83−1, defining set A = {1,2,3,4,5,6,7,9,11,12,13,14,17,18,25,26,27,33,34,35,36,42}, and minimum distance d ≥ |{−9,12,33,…,9}|+1 = 55 (BCH-bound) [i]
  3. linear OA(872, 73, F8, 72) (dual of [73, 1, 73]-code or 73-arc in PG(71,8)), using the narrow-sense BCH-code C(I) with length 73 | 83−1, defining interval I = [1,43], and designed minimum distance d ≥ |I|+1 = 73 [i]
  4. linear OA(863, 73, F8, 45) (dual of [73, 10, 46]-code), using the cyclic code C(A) with length 73 | 83−1, defining set A = {1,2,3,4,5,6,7,11,12,13,14,17,18,25,26,27,33,34,35,36,42}, and minimum distance d ≥ |{13,34,55,…,−12}|+1 = 46 (BCH-bound) [i]
  5. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using
  6. linear OA(87, 10, F8, 7) (dual of [10, 3, 8]-code or 10-arc in PG(6,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.