Information on Result #701700

Linear OA(241, 255, F2, 11) (dual of [255, 214, 12]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,8}, and designed minimum distance d ≥ |I|+1 = 12

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(243, 274, F2, 10) (dual of [274, 231, 11]-code) [i]Construction XX with Cyclic Codes
2Linear OA(243, 273, F2, 11) (dual of [273, 230, 12]-code) [i]
3Linear OA(254, 277, F2, 13) (dual of [277, 223, 14]-code) [i]
4Linear OA(251, 274, F2, 12) (dual of [274, 223, 13]-code) [i]
5Linear OA(251, 273, F2, 13) (dual of [273, 222, 14]-code) [i]
6Linear OOA(241, 85, F2, 3, 11) (dual of [(85, 3), 214, 12]-NRT-code) [i]OOA Folding
7Linear OOA(241, 51, F2, 5, 11) (dual of [(51, 5), 214, 12]-NRT-code) [i]