Information on Result #701723
Linear OA(256, 255, F2, 14) (dual of [255, 199, 15]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(255, 160, F2, 14) (dual of [160, 105, 15]-code) | [i] | Construction Y1 | |
2 | Linear OA(270, 277, F2, 17) (dual of [277, 207, 18]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
3 | Linear OA(267, 274, F2, 16) (dual of [274, 207, 17]-code) | [i] | ✔ | |
4 | Linear OOA(256, 127, F2, 2, 14) (dual of [(127, 2), 198, 15]-NRT-code) | [i] | OOA Folding | |
5 | Linear OOA(256, 85, F2, 3, 14) (dual of [(85, 3), 199, 15]-NRT-code) | [i] | ||
6 | Linear OOA(256, 63, F2, 4, 14) (dual of [(63, 4), 196, 15]-NRT-code) | [i] | ||
7 | Linear OOA(256, 51, F2, 5, 14) (dual of [(51, 5), 199, 15]-NRT-code) | [i] | ||
8 | Linear OOA(256, 42, F2, 6, 14) (dual of [(42, 6), 196, 15]-NRT-code) | [i] |