Information on Result #701738

Linear OA(256, 255, F2, 14) (dual of [255, 199, 15]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−14,−13,…,−1}, and designed minimum distance d ≥ |I|+1 = 15

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(255, 160, F2, 14) (dual of [160, 105, 15]-code) [i]Construction Y1
2Linear OA(287, 286, F2, 21) (dual of [286, 199, 22]-code) [i]Construction XX with Cyclic Codes
3Linear OA(284, 283, F2, 20) (dual of [283, 199, 21]-code) [i]
4Linear OA(283, 281, F2, 20) (dual of [281, 198, 21]-code) [i]
5Linear OA(297, 296, F2, 22) (dual of [296, 199, 23]-code) [i]
6Linear OOA(256, 127, F2, 2, 14) (dual of [(127, 2), 198, 15]-NRT-code) [i]OOA Folding
7Linear OOA(256, 85, F2, 3, 14) (dual of [(85, 3), 199, 15]-NRT-code) [i]
8Linear OOA(256, 63, F2, 4, 14) (dual of [(63, 4), 196, 15]-NRT-code) [i]
9Linear OOA(256, 51, F2, 5, 14) (dual of [(51, 5), 199, 15]-NRT-code) [i]
10Linear OOA(256, 42, F2, 6, 14) (dual of [(42, 6), 196, 15]-NRT-code) [i]