Information on Result #701742
Linear OA(257, 255, F2, 15) (dual of [255, 198, 16]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−14,−13,…,0}, and designed minimum distance d ≥ |I|+1 = 16
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(283, 280, F2, 21) (dual of [280, 197, 22]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(297, 295, F2, 23) (dual of [295, 198, 24]-code) | [i] | ✔ | |
3 | Linear OOA(257, 85, F2, 3, 15) (dual of [(85, 3), 198, 16]-NRT-code) | [i] | OOA Folding | |
4 | Linear OOA(257, 51, F2, 5, 15) (dual of [(51, 5), 198, 16]-NRT-code) | [i] | ||
5 | Linear OOA(257, 42, F2, 6, 15) (dual of [(42, 6), 195, 16]-NRT-code) | [i] |