Information on Result #701744

Linear OA(276, 255, F2, 20) (dual of [255, 179, 21]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−20,−19,…,−1}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(275, 171, F2, 20) (dual of [171, 96, 21]-code) [i]Construction Y1
2Linear OA(297, 296, F2, 22) (dual of [296, 199, 23]-code) [i]Construction XX with Cyclic Codes
3Linear OA(2125, 304, F2, 29) (dual of [304, 179, 30]-code) [i]
4Linear OA(2122, 301, F2, 28) (dual of [301, 179, 29]-code) [i]
5Linear OOA(276, 127, F2, 2, 20) (dual of [(127, 2), 178, 21]-NRT-code) [i]OOA Folding
6Linear OOA(276, 85, F2, 3, 20) (dual of [(85, 3), 179, 21]-NRT-code) [i]
7Linear OOA(276, 63, F2, 4, 20) (dual of [(63, 4), 176, 21]-NRT-code) [i]
8Linear OOA(276, 51, F2, 5, 20) (dual of [(51, 5), 179, 21]-NRT-code) [i]