Information on Result #701750

Linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(282, 273, F2, 21) (dual of [273, 191, 22]-code) [i]Construction XX with Cyclic Codes
2Linear OA(279, 270, F2, 20) (dual of [270, 191, 21]-code) [i]
3Linear OA(279, 269, F2, 21) (dual of [269, 190, 22]-code) [i]
4Linear OA(290, 277, F2, 23) (dual of [277, 187, 24]-code) [i]
5Linear OA(287, 274, F2, 22) (dual of [274, 187, 23]-code) [i]
6Linear OA(287, 273, F2, 23) (dual of [273, 186, 24]-code) [i]
7Linear OA(2104, 293, F2, 25) (dual of [293, 189, 26]-code) [i]
8Linear OOA(277, 85, F2, 3, 21) (dual of [(85, 3), 178, 22]-NRT-code) [i]OOA Folding
9Linear OOA(277, 51, F2, 5, 21) (dual of [(51, 5), 178, 22]-NRT-code) [i]
10Linear OOA(277, 42, F2, 6, 21) (dual of [(42, 6), 175, 22]-NRT-code) [i]