Information on Result #701762
Linear OA(269, 255, F2, 19) (dual of [255, 186, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(296, 289, F2, 23) (dual of [289, 193, 24]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(279, 269, F2, 21) (dual of [269, 190, 22]-code) | [i] | ✔ | |
3 | Linear OA(292, 282, F2, 23) (dual of [282, 190, 24]-code) | [i] | ✔ | |
4 | Linear OA(2106, 296, F2, 25) (dual of [296, 190, 26]-code) | [i] | ✔ | |
5 | Linear OA(2105, 293, F2, 25) (dual of [293, 188, 26]-code) | [i] | ✔ | |
6 | Linear OA(287, 273, F2, 23) (dual of [273, 186, 24]-code) | [i] | ✔ | |
7 | Linear OA(2100, 286, F2, 25) (dual of [286, 186, 26]-code) | [i] | ✔ | |
8 | Linear OA(299, 280, F2, 25) (dual of [280, 181, 26]-code) | [i] | ✔ | |
9 | Linear OA(2114, 300, F2, 27) (dual of [300, 186, 28]-code) | [i] | ✔ | |
10 | Linear OA(2113, 297, F2, 27) (dual of [297, 184, 28]-code) | [i] | ✔ | |
11 | Linear OA(2113, 299, F2, 27) (dual of [299, 186, 28]-code) | [i] | ✔ | |
12 | Linear OA(2112, 293, F2, 27) (dual of [293, 181, 28]-code) | [i] | ✔ | |
13 | Linear OOA(269, 85, F2, 3, 19) (dual of [(85, 3), 186, 20]-NRT-code) | [i] | OOA Folding | |
14 | Linear OOA(269, 51, F2, 5, 19) (dual of [(51, 5), 186, 20]-NRT-code) | [i] | ||
15 | Linear OOA(269, 42, F2, 6, 19) (dual of [(42, 6), 183, 20]-NRT-code) | [i] |