Information on Result #701763

Linear OA(279, 269, F2, 21) (dual of [269, 190, 22]-code), using construction XX applied to C1 = C([253,16]), C2 = C([0,18]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([253,18]) based on
  1. linear OA(273, 255, F2, 19) (dual of [255, 182, 20]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,16}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(269, 255, F2, 19) (dual of [255, 186, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  4. linear OA(265, 255, F2, 17) (dual of [255, 190, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
  6. linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(278, 268, F2, 20) (dual of [268, 190, 21]-code) [i]Truncation
2Linear OOA(279, 134, F2, 2, 21) (dual of [(134, 2), 189, 22]-NRT-code) [i]OOA Folding
3Linear OOA(279, 89, F2, 3, 21) (dual of [(89, 3), 188, 22]-NRT-code) [i]
4Linear OOA(279, 67, F2, 4, 21) (dual of [(67, 4), 189, 22]-NRT-code) [i]