Information on Result #701782

Linear OA(293, 255, F2, 25) (dual of [255, 162, 26]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,20}, and designed minimum distance d ≥ |I|+1 = 26

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2104, 291, F2, 25) (dual of [291, 187, 26]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2100, 287, F2, 24) (dual of [287, 187, 25]-code) [i]
3Linear OA(299, 280, F2, 24) (dual of [280, 181, 25]-code) [i]
4Linear OA(2100, 286, F2, 25) (dual of [286, 186, 26]-code) [i]
5Linear OA(299, 280, F2, 25) (dual of [280, 181, 26]-code) [i]
6Linear OA(2112, 291, F2, 27) (dual of [291, 179, 28]-code) [i]
7Linear OA(2108, 287, F2, 26) (dual of [287, 179, 27]-code) [i]
8Linear OA(2107, 280, F2, 26) (dual of [280, 173, 27]-code) [i]
9Linear OA(2108, 286, F2, 27) (dual of [286, 178, 28]-code) [i]
10Linear OA(2107, 280, F2, 27) (dual of [280, 173, 28]-code) [i]
11Linear OA(2121, 300, F2, 28) (dual of [300, 179, 29]-code) [i]
12Linear OA(2121, 299, F2, 29) (dual of [299, 178, 30]-code) [i]
13Linear OA(2120, 293, F2, 29) (dual of [293, 173, 30]-code) [i]
14Linear OOA(293, 85, F2, 3, 25) (dual of [(85, 3), 162, 26]-NRT-code) [i]OOA Folding
15Linear OOA(293, 51, F2, 5, 25) (dual of [(51, 5), 162, 26]-NRT-code) [i]