Information on Result #701788

Linear OA(287, 273, F2, 23) (dual of [273, 186, 24]-code), using construction XX applied to C1 = C([253,18]), C2 = C([0,20]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([253,20]) based on
  1. linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  2. linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(285, 255, F2, 23) (dual of [255, 170, 24]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(269, 255, F2, 19) (dual of [255, 186, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
  6. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(286, 272, F2, 22) (dual of [272, 186, 23]-code) [i]Truncation
2Linear OOA(287, 136, F2, 2, 23) (dual of [(136, 2), 185, 24]-NRT-code) [i]OOA Folding
3Linear OOA(287, 91, F2, 3, 23) (dual of [(91, 3), 186, 24]-NRT-code) [i]
4Linear OOA(287, 68, F2, 4, 23) (dual of [(68, 4), 185, 24]-NRT-code) [i]
5Linear OOA(287, 54, F2, 5, 23) (dual of [(54, 5), 183, 24]-NRT-code) [i]
6Linear OOA(287, 45, F2, 6, 23) (dual of [(45, 6), 183, 24]-NRT-code) [i]