Information on Result #701789

Linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(287, 273, F2, 23) (dual of [273, 186, 24]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2100, 286, F2, 25) (dual of [286, 186, 26]-code) [i]
3Linear OA(299, 280, F2, 25) (dual of [280, 181, 26]-code) [i]
4Linear OA(2114, 300, F2, 27) (dual of [300, 186, 28]-code) [i]
5Linear OA(2113, 297, F2, 27) (dual of [297, 184, 28]-code) [i]
6Linear OA(295, 273, F2, 25) (dual of [273, 178, 26]-code) [i]
7Linear OA(2108, 286, F2, 27) (dual of [286, 178, 28]-code) [i]
8Linear OA(2107, 280, F2, 27) (dual of [280, 173, 28]-code) [i]
9Linear OA(2122, 300, F2, 29) (dual of [300, 178, 30]-code) [i]
10Linear OA(2121, 297, F2, 29) (dual of [297, 176, 30]-code) [i]
11Linear OA(2121, 299, F2, 29) (dual of [299, 178, 30]-code) [i]
12Linear OA(2120, 293, F2, 29) (dual of [293, 173, 30]-code) [i]
13Linear OA(2134, 310, F2, 31) (dual of [310, 176, 32]-code) [i]
14Linear OOA(277, 85, F2, 3, 21) (dual of [(85, 3), 178, 22]-NRT-code) [i]OOA Folding
15Linear OOA(277, 51, F2, 5, 21) (dual of [(51, 5), 178, 22]-NRT-code) [i]
16Linear OOA(277, 42, F2, 6, 21) (dual of [(42, 6), 175, 22]-NRT-code) [i]