Information on Result #701795

Linear OA(292, 255, F2, 24) (dual of [255, 163, 25]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−24,−23,…,−1}, and designed minimum distance d ≥ |I|+1 = 25

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2117, 304, F2, 27) (dual of [304, 187, 28]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2114, 301, F2, 26) (dual of [301, 187, 27]-code) [i]
3Linear OA(2138, 301, F2, 32) (dual of [301, 163, 33]-code) [i]
4Linear OOA(292, 127, F2, 2, 24) (dual of [(127, 2), 162, 25]-NRT-code) [i]OOA Folding
5Linear OOA(292, 85, F2, 3, 24) (dual of [(85, 3), 163, 25]-NRT-code) [i]
6Linear OOA(292, 63, F2, 4, 24) (dual of [(63, 4), 160, 25]-NRT-code) [i]
7Linear OOA(292, 51, F2, 5, 24) (dual of [(51, 5), 163, 25]-NRT-code) [i]