Information on Result #701812

Linear OA(2112, 293, F2, 27) (dual of [293, 181, 28]-code), using construction XX applied to C1 = C([251,18]), C2 = C([0,22]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([251,22]) based on
  1. linear OA(285, 255, F2, 23) (dual of [255, 170, 24]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,18}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(285, 255, F2, 23) (dual of [255, 170, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(2101, 255, F2, 27) (dual of [255, 154, 28]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,22}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  4. linear OA(269, 255, F2, 19) (dual of [255, 186, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
  6. linear OA(26, 22, F2, 3) (dual of [22, 16, 4]-code or 22-cap in PG(5,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2111, 292, F2, 26) (dual of [292, 181, 27]-code) [i]Truncation
2Linear OOA(2112, 146, F2, 2, 27) (dual of [(146, 2), 180, 28]-NRT-code) [i]OOA Folding
3Linear OOA(2112, 73, F2, 4, 27) (dual of [(73, 4), 180, 28]-NRT-code) [i]