Information on Result #701863
Linear OA(2137, 297, F2, 33) (dual of [297, 160, 34]-code), using construction XX applied to C1 = C([249,24]), C2 = C([0,26]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([249,26]) based on
- linear OA(2117, 255, F2, 31) (dual of [255, 138, 32]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−6,−5,…,24}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2101, 255, F2, 27) (dual of [255, 154, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(2125, 255, F2, 33) (dual of [255, 130, 34]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−6,−5,…,26}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(293, 255, F2, 25) (dual of [255, 162, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2137, 99, F2, 3, 33) (dual of [(99, 3), 160, 34]-NRT-code) | [i] | OOA Folding |