Information on Result #701865

Linear OA(2116, 255, F2, 30) (dual of [255, 139, 31]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−30,−29,…,−1}, and designed minimum distance d ≥ |I|+1 = 31

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2138, 301, F2, 32) (dual of [301, 163, 33]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2143, 282, F2, 38) (dual of [282, 139, 39]-code) [i]
3Linear OA(2142, 277, F2, 38) (dual of [277, 135, 39]-code) [i]
4Linear OA(2141, 274, F2, 38) (dual of [274, 133, 39]-code) [i]
5Linear OA(2161, 300, F2, 41) (dual of [300, 139, 42]-code) [i]
6Linear OA(2158, 297, F2, 40) (dual of [297, 139, 41]-code) [i]
7Linear OA(2157, 293, F2, 40) (dual of [293, 136, 41]-code) [i]
8Linear OA(2157, 292, F2, 41) (dual of [292, 135, 42]-code) [i]
9Linear OA(2154, 289, F2, 40) (dual of [289, 135, 41]-code) [i]
10Linear OA(2156, 295, F2, 40) (dual of [295, 139, 41]-code) [i]
11Linear OOA(2116, 127, F2, 2, 30) (dual of [(127, 2), 138, 31]-NRT-code) [i]OOA Folding
12Linear OOA(2116, 85, F2, 3, 30) (dual of [(85, 3), 139, 31]-NRT-code) [i]
13Linear OOA(2116, 63, F2, 4, 30) (dual of [(63, 4), 136, 31]-NRT-code) [i]