Information on Result #701887
Linear OA(2125, 255, F2, 37) (dual of [255, 130, 38]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,0}, and designed minimum distance d ≥ |I|+1 = 38
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2154, 305, F2, 38) (dual of [305, 151, 39]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2150, 296, F2, 39) (dual of [296, 146, 40]-code) | [i] | ✔ | |
3 | Linear OA(2146, 288, F2, 39) (dual of [288, 142, 40]-code) | [i] | ✔ | |
4 | Linear OA(2143, 281, F2, 39) (dual of [281, 138, 40]-code) | [i] | ✔ | |
5 | Linear OA(2142, 276, F2, 39) (dual of [276, 134, 40]-code) | [i] | ✔ | |
6 | Linear OA(2163, 309, F2, 41) (dual of [309, 146, 42]-code) | [i] | ✔ | |
7 | Linear OA(2159, 301, F2, 41) (dual of [301, 142, 42]-code) | [i] | ✔ | |
8 | Linear OA(2156, 294, F2, 41) (dual of [294, 138, 42]-code) | [i] | ✔ | |
9 | Linear OA(2161, 291, F2, 45) (dual of [291, 130, 46]-code) | [i] | ✔ | |
10 | Linear OA(2160, 286, F2, 45) (dual of [286, 126, 46]-code) | [i] | ✔ | |
11 | Linear OA(2159, 282, F2, 45) (dual of [282, 123, 46]-code) | [i] | ✔ | |
12 | Linear OA(2174, 304, F2, 47) (dual of [304, 130, 48]-code) | [i] | ✔ | |
13 | Linear OA(2173, 299, F2, 47) (dual of [299, 126, 48]-code) | [i] | ✔ | |
14 | Linear OOA(2125, 85, F2, 3, 37) (dual of [(85, 3), 130, 38]-NRT-code) | [i] | OOA Folding | |
15 | Linear OOA(2125, 51, F2, 5, 37) (dual of [(51, 5), 130, 38]-NRT-code) | [i] | ||
16 | Linear OOA(2125, 42, F2, 6, 37) (dual of [(42, 6), 127, 38]-NRT-code) | [i] |