Information on Result #701887

Linear OA(2125, 255, F2, 37) (dual of [255, 130, 38]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,0}, and designed minimum distance d ≥ |I|+1 = 38

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2154, 305, F2, 38) (dual of [305, 151, 39]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2150, 296, F2, 39) (dual of [296, 146, 40]-code) [i]
3Linear OA(2146, 288, F2, 39) (dual of [288, 142, 40]-code) [i]
4Linear OA(2143, 281, F2, 39) (dual of [281, 138, 40]-code) [i]
5Linear OA(2142, 276, F2, 39) (dual of [276, 134, 40]-code) [i]
6Linear OA(2163, 309, F2, 41) (dual of [309, 146, 42]-code) [i]
7Linear OA(2159, 301, F2, 41) (dual of [301, 142, 42]-code) [i]
8Linear OA(2156, 294, F2, 41) (dual of [294, 138, 42]-code) [i]
9Linear OA(2161, 291, F2, 45) (dual of [291, 130, 46]-code) [i]
10Linear OA(2160, 286, F2, 45) (dual of [286, 126, 46]-code) [i]
11Linear OA(2159, 282, F2, 45) (dual of [282, 123, 46]-code) [i]
12Linear OA(2174, 304, F2, 47) (dual of [304, 130, 48]-code) [i]
13Linear OA(2173, 299, F2, 47) (dual of [299, 126, 48]-code) [i]
14Linear OOA(2125, 85, F2, 3, 37) (dual of [(85, 3), 130, 38]-NRT-code) [i]OOA Folding
15Linear OOA(2125, 51, F2, 5, 37) (dual of [(51, 5), 130, 38]-NRT-code) [i]
16Linear OOA(2125, 42, F2, 6, 37) (dual of [(42, 6), 127, 38]-NRT-code) [i]