Information on Result #701904
Linear OA(2146, 288, F2, 39) (dual of [288, 142, 40]-code), using construction XX applied to C1 = C([219,0]), C2 = C([227,2]), C3 = C1 + C2 = C([227,0]), and C∩ = C1 ∩ C2 = C([219,2]) based on
- linear OA(2125, 255, F2, 37) (dual of [255, 130, 38]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,0}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2117, 255, F2, 31) (dual of [255, 138, 32]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−28,−27,…,2}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,2}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2109, 255, F2, 29) (dual of [255, 146, 30]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−28,−27,…,0}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(212, 24, F2, 7) (dual of [24, 12, 8]-code), using
- extended Golay code Ge(2) [i]
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2145, 287, F2, 38) (dual of [287, 142, 39]-code) | [i] | Truncation | |
2 | Linear OOA(2146, 144, F2, 2, 39) (dual of [(144, 2), 142, 40]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(2146, 96, F2, 3, 39) (dual of [(96, 3), 142, 40]-NRT-code) | [i] |