Information on Result #701951

Linear OA(2140, 255, F2, 42) (dual of [255, 115, 43]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−42,−41,…,−1}, and designed minimum distance d ≥ |I|+1 = 43

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2140, 255, F2, 41) (dual of [255, 115, 42]-code) [i]Strength Reduction
2Linear OA(2140, 255, F2, 40) (dual of [255, 115, 41]-code) [i]
3Linear OA(2142, 257, F2, 42) (dual of [257, 115, 43]-code) [i]Code Embedding in Larger Space
4Linear OA(2139, 207, F2, 42) (dual of [207, 68, 43]-code) [i]Construction Y1
5Linear OA(2164, 295, F2, 45) (dual of [295, 131, 46]-code) [i]Construction XX with Cyclic Codes
6Linear OA(2161, 292, F2, 44) (dual of [292, 131, 45]-code) [i]
7Linear OA(2160, 287, F2, 44) (dual of [287, 127, 45]-code) [i]
8Linear OA(2159, 283, F2, 44) (dual of [283, 124, 45]-code) [i]
9Linear OA(2158, 281, F2, 45) (dual of [281, 123, 46]-code) [i]
10Linear OA(2155, 278, F2, 44) (dual of [278, 123, 45]-code) [i]
11Linear OA(2154, 273, F2, 44) (dual of [273, 119, 45]-code) [i]
12Linear OA(2174, 305, F2, 46) (dual of [305, 131, 47]-code) [i]
13Linear OA(2173, 300, F2, 46) (dual of [300, 127, 47]-code) [i]
14Linear OA(2172, 296, F2, 46) (dual of [296, 124, 47]-code) [i]
15Linear OOA(2140, 127, F2, 2, 42) (dual of [(127, 2), 114, 43]-NRT-code) [i]OOA Folding
16Linear OOA(2140, 85, F2, 3, 42) (dual of [(85, 3), 115, 43]-NRT-code) [i]
17Linear OOA(2140, 63, F2, 4, 42) (dual of [(63, 4), 112, 43]-NRT-code) [i]
18Linear OOA(2140, 51, F2, 5, 42) (dual of [(51, 5), 115, 43]-NRT-code) [i]