Information on Result #701952

Linear OA(2149, 255, F2, 45) (dual of [255, 106, 46]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−42,−41,…,2}, and designed minimum distance d ≥ |I|+1 = 46

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2164, 295, F2, 45) (dual of [295, 131, 46]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2161, 292, F2, 44) (dual of [292, 131, 45]-code) [i]
3Linear OA(2160, 287, F2, 44) (dual of [287, 127, 45]-code) [i]
4Linear OA(2159, 283, F2, 44) (dual of [283, 124, 45]-code) [i]
5Linear OA(2161, 291, F2, 45) (dual of [291, 130, 46]-code) [i]
6Linear OA(2160, 286, F2, 45) (dual of [286, 126, 46]-code) [i]
7Linear OA(2159, 282, F2, 45) (dual of [282, 123, 46]-code) [i]
8Linear OA(2158, 281, F2, 45) (dual of [281, 123, 46]-code) [i]
9Linear OA(2155, 278, F2, 44) (dual of [278, 123, 45]-code) [i]
10Linear OA(2154, 273, F2, 44) (dual of [273, 119, 45]-code) [i]
11Linear OA(2155, 277, F2, 45) (dual of [277, 122, 46]-code) [i]
12Linear OA(2154, 272, F2, 45) (dual of [272, 118, 46]-code) [i]
13Linear OA(2181, 295, F2, 51) (dual of [295, 114, 52]-code) [i]
14Linear OOA(2149, 85, F2, 3, 45) (dual of [(85, 3), 106, 46]-NRT-code) [i]OOA Folding
15Linear OOA(2149, 51, F2, 5, 45) (dual of [(51, 5), 106, 46]-NRT-code) [i]