Information on Result #701981

Linear OA(2168, 290, F2, 47) (dual of [290, 122, 48]-code), using construction XX applied to C1 = C([251,38]), C2 = C([0,42]), C3 = C1 + C2 = C([0,38]), and C∩ = C1 ∩ C2 = C([251,42]) based on
  1. linear OA(2149, 255, F2, 43) (dual of [255, 106, 44]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,38}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  2. linear OA(2141, 255, F2, 43) (dual of [255, 114, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
  3. linear OA(2157, 255, F2, 47) (dual of [255, 98, 48]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,42}, and designed minimum distance d ≥ |I|+1 = 48 [i]
  4. linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(26, 22, F2, 3) (dual of [22, 16, 4]-code or 22-cap in PG(5,2)), using
  6. linear OA(25, 13, F2, 3) (dual of [13, 8, 4]-code or 13-cap in PG(4,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2167, 289, F2, 46) (dual of [289, 122, 47]-code) [i]Truncation
2Linear OOA(2168, 145, F2, 2, 47) (dual of [(145, 2), 122, 48]-NRT-code) [i]OOA Folding
3Linear OOA(2168, 96, F2, 3, 47) (dual of [(96, 3), 120, 48]-NRT-code) [i]