Information on Result #701987
Linear OA(2157, 255, F2, 47) (dual of [255, 98, 48]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,44}, and designed minimum distance d ≥ |I|+1 = 48
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2162, 277, F2, 47) (dual of [277, 115, 48]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2159, 274, F2, 46) (dual of [274, 115, 47]-code) | [i] | ✔ | |
3 | Linear OA(2159, 273, F2, 47) (dual of [273, 114, 48]-code) | [i] | ✔ | |
4 | Linear OA(2170, 277, F2, 49) (dual of [277, 107, 50]-code) | [i] | ✔ | |
5 | Linear OA(2167, 274, F2, 48) (dual of [274, 107, 49]-code) | [i] | ✔ | |
6 | Linear OA(2167, 273, F2, 49) (dual of [273, 106, 50]-code) | [i] | ✔ | |
7 | Linear OOA(2157, 85, F2, 3, 47) (dual of [(85, 3), 98, 48]-NRT-code) | [i] | OOA Folding | |
8 | Linear OOA(2157, 51, F2, 5, 47) (dual of [(51, 5), 98, 48]-NRT-code) | [i] |