Information on Result #702042

Linear OA(2227, 255, F2, 95) (dual of [255, 28, 96]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−8,−7,…,86}, and designed minimum distance d ≥ |I|+1 = 96

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2245, 292, F2, 94) (dual of [292, 47, 95]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2239, 286, F2, 92) (dual of [286, 47, 93]-code) [i]
3Linear OA(2244, 290, F2, 94) (dual of [290, 46, 95]-code) [i]
4Linear OA(2240, 282, F2, 94) (dual of [282, 42, 95]-code) [i]
5Linear OA(2244, 290, F2, 95) (dual of [290, 46, 96]-code) [i]
6Linear OA(2239, 285, F2, 93) (dual of [285, 46, 94]-code) [i]
7Linear OA(2240, 282, F2, 95) (dual of [282, 42, 96]-code) [i]
8Linear OA(2257, 302, F2, 98) (dual of [302, 45, 99]-code) [i]
9Linear OA(2251, 296, F2, 96) (dual of [296, 45, 97]-code) [i]
10Linear OA(2256, 300, F2, 98) (dual of [300, 44, 99]-code) [i]
11Linear OA(2255, 296, F2, 98) (dual of [296, 41, 99]-code) [i]
12Linear OA(2252, 292, F2, 98) (dual of [292, 40, 99]-code) [i]
13Linear OA(2248, 288, F2, 96) (dual of [288, 40, 97]-code) [i]
14Linear OA(2256, 300, F2, 99) (dual of [300, 44, 100]-code) [i]
15Linear OA(2251, 295, F2, 97) (dual of [295, 44, 98]-code) [i]
16Linear OA(2255, 296, F2, 99) (dual of [296, 41, 100]-code) [i]
17Linear OA(2252, 292, F2, 99) (dual of [292, 40, 100]-code) [i]
18Linear OA(2248, 288, F2, 97) (dual of [288, 40, 98]-code) [i]
19Linear OOA(2227, 85, F2, 3, 95) (dual of [(85, 3), 28, 96]-NRT-code) [i]OOA Folding
20Linear OOA(2227, 51, F2, 5, 95) (dual of [(51, 5), 28, 96]-NRT-code) [i]