Information on Result #702043

Linear OA(2239, 286, F2, 92) (dual of [286, 47, 93]-code), using construction XX applied to C1 = C([247,84]), C2 = C([1,86]), C3 = C1 + C2 = C([1,84]), and C∩ = C1 ∩ C2 = C([247,86]) based on
  1. linear OA(2225, 255, F2, 93) (dual of [255, 30, 94]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−8,−7,…,84}, and designed minimum distance d ≥ |I|+1 = 94 [i]
  2. linear OA(2210, 255, F2, 86) (dual of [255, 45, 87]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,86], and designed minimum distance d ≥ |I|+1 = 87 [i]
  3. linear OA(2227, 255, F2, 95) (dual of [255, 28, 96]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−8,−7,…,86}, and designed minimum distance d ≥ |I|+1 = 96 [i]
  4. linear OA(2208, 255, F2, 84) (dual of [255, 47, 85]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,84], and designed minimum distance d ≥ |I|+1 = 85 [i]
  5. linear OA(211, 28, F2, 5) (dual of [28, 17, 6]-code), using
  6. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2239, 286, F2, 91) (dual of [286, 47, 92]-code) [i]Strength Reduction
2Linear OA(2239, 286, F2, 90) (dual of [286, 47, 91]-code) [i]
3Linear OA(2239, 286, F2, 89) (dual of [286, 47, 90]-code) [i]
4Linear OA(2239, 286, F2, 88) (dual of [286, 47, 89]-code) [i]
5Linear OA(2240, 287, F2, 93) (dual of [287, 47, 94]-code) [i]Adding a Parity Check Bit