Information on Result #702099
Linear OA(2248, 288, F2, 97) (dual of [288, 40, 98]-code), using construction XX applied to C1 = C([247,86]), C2 = C([0,90]), C3 = C1 + C2 = C([0,86]), and C∩ = C1 ∩ C2 = C([247,90]) based on
- linear OA(2227, 255, F2, 95) (dual of [255, 28, 96]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−8,−7,…,86}, and designed minimum distance d ≥ |I|+1 = 96 [i]
- linear OA(2219, 255, F2, 91) (dual of [255, 36, 92]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,90], and designed minimum distance d ≥ |I|+1 = 92 [i]
- linear OA(2235, 255, F2, 99) (dual of [255, 20, 100]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−8,−7,…,90}, and designed minimum distance d ≥ |I|+1 = 100 [i]
- linear OA(2211, 255, F2, 87) (dual of [255, 44, 88]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,86], and designed minimum distance d ≥ |I|+1 = 88 [i]
- linear OA(212, 24, F2, 7) (dual of [24, 12, 8]-code), using
- extended Golay code Ge(2) [i]
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2247, 287, F2, 96) (dual of [287, 40, 97]-code) | [i] | Truncation | |
2 | Linear OOA(2248, 144, F2, 2, 97) (dual of [(144, 2), 40, 98]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(2248, 96, F2, 3, 97) (dual of [(96, 3), 40, 98]-NRT-code) | [i] |