Information on Result #702103
Linear OA(2210, 255, F2, 86) (dual of [255, 45, 87]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−86,−85,…,−1}, and designed minimum distance d ≥ |I|+1 = 87
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2209, 239, F2, 86) (dual of [239, 30, 87]-code) | [i] | Construction Y1 | |
2 | Linear OA(2256, 301, F2, 98) (dual of [301, 45, 99]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
3 | Linear OA(2252, 293, F2, 98) (dual of [293, 41, 99]-code) | [i] | ✔ | |
4 | Linear OA(2248, 289, F2, 96) (dual of [289, 41, 97]-code) | [i] | ✔ | |
5 | Linear OOA(2210, 127, F2, 2, 86) (dual of [(127, 2), 44, 87]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(2210, 85, F2, 3, 86) (dual of [(85, 3), 45, 87]-NRT-code) | [i] | ||
7 | Linear OOA(2210, 63, F2, 4, 86) (dual of [(63, 4), 42, 87]-NRT-code) | [i] | ||
8 | Linear OOA(2210, 51, F2, 5, 86) (dual of [(51, 5), 45, 87]-NRT-code) | [i] | ||
9 | Linear OOA(2210, 36, F2, 7, 86) (dual of [(36, 7), 42, 87]-NRT-code) | [i] |