Information on Result #702221
Linear OA(288, 537, F2, 19) (dual of [537, 449, 20]-code), using construction XX applied to C1 = C([507,12]), C2 = C([0,14]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([507,14]) based on
- linear OA(273, 511, F2, 17) (dual of [511, 438, 18]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,12}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(264, 511, F2, 15) (dual of [511, 447, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(282, 511, F2, 19) (dual of [511, 429, 20]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,14}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(255, 511, F2, 13) (dual of [511, 456, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(287, 536, F2, 18) (dual of [536, 449, 19]-code) | [i] | Truncation | |
2 | Linear OOA(288, 179, F2, 3, 19) (dual of [(179, 3), 449, 20]-NRT-code) | [i] | OOA Folding |