Information on Result #702247
Linear OA(2120, 551, F2, 25) (dual of [551, 431, 26]-code), using construction XX applied to C1 = C([507,16]), C2 = C([0,20]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([507,20]) based on
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,16}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2109, 511, F2, 25) (dual of [511, 402, 26]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,20}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(273, 511, F2, 17) (dual of [511, 438, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2119, 550, F2, 24) (dual of [550, 431, 25]-code) | [i] | Truncation |