Information on Result #702296
Linear OA(2157, 554, F2, 32) (dual of [554, 397, 33]-code), using construction XX applied to C1 = C([505,24]), C2 = C([1,26]), C3 = C1 + C2 = C([1,24]), and C∩ = C1 ∩ C2 = C([505,26]) based on
- linear OA(2136, 511, F2, 31) (dual of [511, 375, 32]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,24}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2117, 511, F2, 26) (dual of [511, 394, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(2145, 511, F2, 33) (dual of [511, 366, 34]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,26}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2108, 511, F2, 24) (dual of [511, 403, 25]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.