Information on Result #702347
Linear OA(2159, 530, F2, 36) (dual of [530, 371, 37]-code), using construction XX applied to C1 = C([477,510]), C2 = C([481,2]), C3 = C1 + C2 = C([481,510]), and C∩ = C1 ∩ C2 = C([477,2]) based on
- linear OA(2144, 511, F2, 34) (dual of [511, 367, 35]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−34,−33,…,−1}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2145, 511, F2, 33) (dual of [511, 366, 34]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−30,−29,…,2}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2154, 511, F2, 37) (dual of [511, 357, 38]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−34,−33,…,2}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2135, 511, F2, 30) (dual of [511, 376, 31]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−30,−29,…,−1}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(24, 8, F2, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,2)), using
- linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2159, 106, F2, 5, 36) (dual of [(106, 5), 371, 37]-NRT-code) | [i] | OOA Folding |