Information on Result #702368

Linear OA(2179, 557, F2, 39) (dual of [557, 378, 40]-code), using construction XX applied to C1 = C([477,0]), C2 = C([483,4]), C3 = C1 + C2 = C([483,0]), and C∩ = C1 ∩ C2 = C([477,4]) based on
  1. linear OA(2145, 511, F2, 35) (dual of [511, 366, 36]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−34,−33,…,0}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  2. linear OA(2145, 511, F2, 33) (dual of [511, 366, 34]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−28,−27,…,4}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  3. linear OA(2163, 511, F2, 39) (dual of [511, 348, 40]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−34,−33,…,4}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(2127, 511, F2, 29) (dual of [511, 384, 30]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−28,−27,…,0}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(210, 22, F2, 5) (dual of [22, 12, 6]-code), using
  6. linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2178, 556, F2, 38) (dual of [556, 378, 39]-code) [i]Truncation
2Linear OOA(2179, 278, F2, 2, 39) (dual of [(278, 2), 377, 40]-NRT-code) [i]OOA Folding
3Linear OOA(2179, 139, F2, 4, 39) (dual of [(139, 4), 377, 40]-NRT-code) [i]
4Linear OOA(2179, 111, F2, 5, 39) (dual of [(111, 5), 376, 40]-NRT-code) [i]