Information on Result #702550
Linear OA(2247, 562, F2, 54) (dual of [562, 315, 55]-code), using construction XX applied to C1 = C([475,16]), C2 = C([485,18]), C3 = C1 + C2 = C([485,16]), and C∩ = C1 ∩ C2 = C([475,18]) based on
- linear OA(2217, 511, F2, 53) (dual of [511, 294, 54]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−36,−35,…,16}, and designed minimum distance d ≥ |I|+1 = 54 [i]
- linear OA(2199, 511, F2, 45) (dual of [511, 312, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−26,−25,…,18}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2226, 511, F2, 55) (dual of [511, 285, 56]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−36,−35,…,18}, and designed minimum distance d ≥ |I|+1 = 56 [i]
- linear OA(2190, 511, F2, 43) (dual of [511, 321, 44]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−26,−25,…,16}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(220, 41, F2, 8) (dual of [41, 21, 9]-code), using
- 1 times truncation [i] based on linear OA(221, 42, F2, 9) (dual of [42, 21, 10]-code), using
- extended quadratic residue code Qe(42,2) [i]
- 1 times truncation [i] based on linear OA(221, 42, F2, 9) (dual of [42, 21, 10]-code), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.