Information on Result #702847
Linear OA(2188, 1070, F2, 36) (dual of [1070, 882, 37]-code), using construction XX applied to C1 = C([989,0]), C2 = C([995,2]), C3 = C1 + C2 = C([995,0]), and C∩ = C1 ∩ C2 = C([989,2]) based on
- linear OA(2166, 1023, F2, 35) (dual of [1023, 857, 36]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−34,−33,…,0}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(2151, 1023, F2, 31) (dual of [1023, 872, 32]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−28,−27,…,2}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2176, 1023, F2, 37) (dual of [1023, 847, 38]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−34,−33,…,2}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2141, 1023, F2, 29) (dual of [1023, 882, 30]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−28,−27,…,0}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(211, 36, F2, 4) (dual of [36, 25, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(211, 44, F2, 4) (dual of [44, 33, 5]-code), using
- linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2189, 1071, F2, 37) (dual of [1071, 882, 38]-code) | [i] | Adding a Parity Check Bit | |
2 | Linear OOA(2188, 535, F2, 2, 36) (dual of [(535, 2), 882, 37]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(2188, 214, F2, 5, 36) (dual of [(214, 5), 882, 37]-NRT-code) | [i] |