Information on Result #702867
Linear OA(2198, 1068, F2, 38) (dual of [1068, 870, 39]-code), using construction XX applied to C1 = C([987,1022]), C2 = C([993,2]), C3 = C1 + C2 = C([993,1022]), and C∩ = C1 ∩ C2 = C([987,2]) based on
- linear OA(2175, 1023, F2, 36) (dual of [1023, 848, 37]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−36,−35,…,−1}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(2161, 1023, F2, 33) (dual of [1023, 862, 34]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−30,−29,…,2}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2186, 1023, F2, 39) (dual of [1023, 837, 40]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−36,−35,…,2}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2150, 1023, F2, 30) (dual of [1023, 873, 31]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−30,−29,…,−1}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 12, F2, 1) (dual of [12, 11, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.