Information on Result #703060
Linear OA(3189, 208, F3, 102) (dual of [208, 19, 103]-code), using construction XX applied to C1 = C([176,90]), C2 = C([1,97]), C3 = C1 + C2 = C([1,90]), and C∩ = C1 ∩ C2 = C([176,97]) based on
- linear OA(3169, 182, F3, 97) (dual of [182, 13, 98]-code), using the BCH-code C(I) with length 182 | 36−1, defining interval I = {−6,−5,…,90}, and designed minimum distance d ≥ |I|+1 = 98 [i]
- linear OA(3169, 182, F3, 97) (dual of [182, 13, 98]-code), using the narrow-sense BCH-code C(I) with length 182 | 36−1, defining interval I = [1,97], and designed minimum distance d ≥ |I|+1 = 98 [i]
- linear OA(3176, 182, F3, 104) (dual of [182, 6, 105]-code), using the BCH-code C(I) with length 182 | 36−1, defining interval I = {−6,−5,…,97}, and designed minimum distance d ≥ |I|+1 = 105 [i]
- linear OA(3162, 182, F3, 90) (dual of [182, 20, 91]-code), using the narrow-sense BCH-code C(I) with length 182 | 36−1, defining interval I = [1,90], and designed minimum distance d ≥ |I|+1 = 91 [i]
- linear OA(36, 12, F3, 5) (dual of [12, 6, 6]-code), using
- extended Golay code Ge(3) [i]
- linear OA(37, 14, F3, 5) (dual of [14, 7, 6]-code), using
- extended quadratic residue code Qe(14,3) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3189, 104, F3, 2, 102) (dual of [(104, 2), 19, 103]-NRT-code) | [i] | OOA Folding |