Information on Result #703070

Linear OA(371, 242, F3, 22) (dual of [242, 171, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3105, 273, F3, 30) (dual of [273, 168, 31]-code) [i]Construction X with Cyclic Codes
2Linear OA(387, 268, F3, 25) (dual of [268, 181, 26]-code) [i]Construction XX with Cyclic Codes
3Linear OA(385, 266, F3, 24) (dual of [266, 181, 25]-code) [i]
4Linear OA(385, 261, F3, 25) (dual of [261, 176, 26]-code) [i]
5Linear OA(383, 259, F3, 24) (dual of [259, 176, 25]-code) [i]
6Linear OA(392, 268, F3, 26) (dual of [268, 176, 27]-code) [i]
7Linear OA(3102, 283, F3, 28) (dual of [283, 181, 29]-code) [i]
8Linear OA(3100, 281, F3, 27) (dual of [281, 181, 28]-code) [i]
9Linear OA(3100, 276, F3, 28) (dual of [276, 176, 29]-code) [i]
10Linear OA(3105, 274, F3, 30) (dual of [274, 169, 31]-code) [i]
11Linear OA(381, 252, F3, 24) (dual of [252, 171, 25]-code) [i]
12Linear OA(389, 260, F3, 26) (dual of [260, 171, 27]-code) [i]
13Linear OA(396, 267, F3, 27) (dual of [267, 171, 28]-code) [i]
14Linear OA(397, 268, F3, 28) (dual of [268, 171, 29]-code) [i]
15Linear OA(395, 266, F3, 27) (dual of [266, 171, 28]-code) [i]
16Linear OOA(371, 121, F3, 2, 22) (dual of [(121, 2), 171, 23]-NRT-code) [i]OOA Folding