Information on Result #703117

Linear OA(339, 260, F3, 11) (dual of [260, 221, 12]-code), using construction XX applied to C1 = C([239,6]), C2 = C([0,7]), C3 = C1 + C2 = C([0,6]), and C∩ = C1 ∩ C2 = C([239,7]) based on
  1. linear OA(331, 242, F3, 10) (dual of [242, 211, 11]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,6}, and designed minimum distance d ≥ |I|+1 = 11 [i]
  2. linear OA(326, 242, F3, 8) (dual of [242, 216, 9]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 9 [i]
  3. linear OA(336, 242, F3, 11) (dual of [242, 206, 12]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,7}, and designed minimum distance d ≥ |I|+1 = 12 [i]
  4. linear OA(321, 242, F3, 7) (dual of [242, 221, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
  5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
  6. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(339, 130, F3, 2, 11) (dual of [(130, 2), 221, 12]-NRT-code) [i]OOA Folding
2Linear OOA(339, 86, F3, 3, 11) (dual of [(86, 3), 219, 12]-NRT-code) [i]