Information on Result #703118

Linear OA(336, 242, F3, 11) (dual of [242, 206, 12]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,7}, and designed minimum distance d ≥ |I|+1 = 12

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(336, 142, F3, 2, 11) (dual of [(142, 2), 248, 12]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(336, 142, F3, 3, 11) (dual of [(142, 3), 390, 12]-NRT-code) [i]
3Linear OOA(336, 142, F3, 4, 11) (dual of [(142, 4), 532, 12]-NRT-code) [i]
4Linear OOA(336, 142, F3, 5, 11) (dual of [(142, 5), 674, 12]-NRT-code) [i]
5Digital (25, 36, 142)-net over F3 [i]
6Linear OA(339, 260, F3, 11) (dual of [260, 221, 12]-code) [i]Construction XX with Cyclic Codes
7Linear OA(347, 264, F3, 13) (dual of [264, 217, 14]-code) [i]
8Linear OA(345, 261, F3, 12) (dual of [261, 216, 13]-code) [i]
9Linear OA(345, 261, F3, 13) (dual of [261, 216, 14]-code) [i]
10Linear OA(343, 259, F3, 12) (dual of [259, 216, 13]-code) [i]