Information on Result #703161

Linear OA(356, 267, F3, 15) (dual of [267, 211, 16]-code), using construction XX applied to C1 = C([238,9]), C2 = C([0,10]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C([238,10]) based on
  1. linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−4,−3,…,9}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(336, 242, F3, 11) (dual of [242, 206, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  3. linear OA(351, 242, F3, 15) (dual of [242, 191, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−4,−3,…,10}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(331, 242, F3, 10) (dual of [242, 211, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
  5. linear OA(35, 20, F3, 3) (dual of [20, 15, 4]-code or 20-cap in PG(4,3)), using
  6. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(356, 89, F3, 3, 15) (dual of [(89, 3), 211, 16]-NRT-code) [i]OOA Folding