Information on Result #703177
Linear OA(351, 242, F3, 15) (dual of [242, 191, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {108,109,…,122}, and designed minimum distance d ≥ |I|+1 = 16
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(351, 183, F3, 2, 15) (dual of [(183, 2), 315, 16]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(351, 183, F3, 3, 15) (dual of [(183, 3), 498, 16]-NRT-code) | [i] | ||
3 | Linear OOA(351, 183, F3, 4, 15) (dual of [(183, 4), 681, 16]-NRT-code) | [i] | ||
4 | Linear OOA(351, 183, F3, 5, 15) (dual of [(183, 5), 864, 16]-NRT-code) | [i] | ||
5 | Digital (36, 51, 183)-net over F3 | [i] | ||
6 | Linear OA(355, 262, F3, 15) (dual of [262, 207, 16]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(354, 260, F3, 15) (dual of [260, 206, 16]-code) | [i] | ✔ | |
8 | Linear OA(365, 262, F3, 18) (dual of [262, 197, 19]-code) | [i] | ✔ | |
9 | Linear OA(357, 253, F3, 17) (dual of [253, 196, 18]-code) | [i] | ✔ | |
10 | Linear OA(364, 260, F3, 18) (dual of [260, 196, 19]-code) | [i] | ✔ | |
11 | Linear OA(380, 277, F3, 21) (dual of [277, 197, 22]-code) | [i] | ✔ | |
12 | Linear OA(373, 269, F3, 20) (dual of [269, 196, 21]-code) | [i] | ✔ | |
13 | Linear OA(379, 275, F3, 21) (dual of [275, 196, 22]-code) | [i] | ✔ | |
14 | Linear OA(363, 254, F3, 19) (dual of [254, 191, 20]-code) | [i] | ✔ |