Information on Result #703177

Linear OA(351, 242, F3, 15) (dual of [242, 191, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {108,109,…,122}, and designed minimum distance d ≥ |I|+1 = 16

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(351, 183, F3, 2, 15) (dual of [(183, 2), 315, 16]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(351, 183, F3, 3, 15) (dual of [(183, 3), 498, 16]-NRT-code) [i]
3Linear OOA(351, 183, F3, 4, 15) (dual of [(183, 4), 681, 16]-NRT-code) [i]
4Linear OOA(351, 183, F3, 5, 15) (dual of [(183, 5), 864, 16]-NRT-code) [i]
5Digital (36, 51, 183)-net over F3 [i]
6Linear OA(355, 262, F3, 15) (dual of [262, 207, 16]-code) [i]Construction XX with Cyclic Codes
7Linear OA(354, 260, F3, 15) (dual of [260, 206, 16]-code) [i]
8Linear OA(365, 262, F3, 18) (dual of [262, 197, 19]-code) [i]
9Linear OA(357, 253, F3, 17) (dual of [253, 196, 18]-code) [i]
10Linear OA(364, 260, F3, 18) (dual of [260, 196, 19]-code) [i]
11Linear OA(380, 277, F3, 21) (dual of [277, 197, 22]-code) [i]
12Linear OA(373, 269, F3, 20) (dual of [269, 196, 21]-code) [i]
13Linear OA(379, 275, F3, 21) (dual of [275, 196, 22]-code) [i]
14Linear OA(363, 254, F3, 19) (dual of [254, 191, 20]-code) [i]