Information on Result #703191

Linear OA(351, 252, F3, 15) (dual of [252, 201, 16]-code), using construction XX applied to C1 = C([241,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([241,13]) based on
  1. linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(351, 242, F3, 15) (dual of [242, 191, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(341, 242, F3, 13) (dual of [242, 201, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
  6. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(356, 272, F3, 15) (dual of [272, 216, 16]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OOA(351, 126, F3, 2, 15) (dual of [(126, 2), 201, 16]-NRT-code) [i]OOA Folding
3Linear OOA(351, 84, F3, 3, 15) (dual of [(84, 3), 201, 16]-NRT-code) [i]