Information on Result #703210

Linear OA(360, 242, F3, 18) (dual of [242, 182, 19]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {103,104,…,120}, and designed minimum distance d ≥ |I|+1 = 19

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(360, 183, F3, 2, 18) (dual of [(183, 2), 306, 19]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(360, 183, F3, 3, 18) (dual of [(183, 3), 489, 19]-NRT-code) [i]
3Linear OOA(360, 183, F3, 4, 18) (dual of [(183, 4), 672, 19]-NRT-code) [i]
4Linear OOA(360, 183, F3, 5, 18) (dual of [(183, 5), 855, 19]-NRT-code) [i]
5Digital (42, 60, 183)-net over F3 [i]
6Linear OA(375, 277, F3, 20) (dual of [277, 202, 21]-code) [i]Construction XX with Cyclic Codes
7Linear OA(370, 262, F3, 20) (dual of [262, 192, 21]-code) [i]
8Linear OA(380, 262, F3, 23) (dual of [262, 182, 24]-code) [i]
9Linear OA(387, 269, F3, 24) (dual of [269, 182, 25]-code) [i]
10Linear OA(395, 277, F3, 26) (dual of [277, 182, 27]-code) [i]
11Linear OA(3104, 286, F3, 28) (dual of [286, 182, 29]-code) [i]
12Linear OOA(360, 121, F3, 2, 18) (dual of [(121, 2), 182, 19]-NRT-code) [i]OOA Folding