Information on Result #703210
Linear OA(360, 242, F3, 18) (dual of [242, 182, 19]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {103,104,…,120}, and designed minimum distance d ≥ |I|+1 = 19
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(360, 183, F3, 2, 18) (dual of [(183, 2), 306, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(360, 183, F3, 3, 18) (dual of [(183, 3), 489, 19]-NRT-code) | [i] | ||
3 | Linear OOA(360, 183, F3, 4, 18) (dual of [(183, 4), 672, 19]-NRT-code) | [i] | ||
4 | Linear OOA(360, 183, F3, 5, 18) (dual of [(183, 5), 855, 19]-NRT-code) | [i] | ||
5 | Digital (42, 60, 183)-net over F3 | [i] | ||
6 | Linear OA(375, 277, F3, 20) (dual of [277, 202, 21]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(370, 262, F3, 20) (dual of [262, 192, 21]-code) | [i] | ✔ | |
8 | Linear OA(380, 262, F3, 23) (dual of [262, 182, 24]-code) | [i] | ✔ | |
9 | Linear OA(387, 269, F3, 24) (dual of [269, 182, 25]-code) | [i] | ✔ | |
10 | Linear OA(395, 277, F3, 26) (dual of [277, 182, 27]-code) | [i] | ✔ | |
11 | Linear OA(3104, 286, F3, 28) (dual of [286, 182, 29]-code) | [i] | ✔ | |
12 | Linear OOA(360, 121, F3, 2, 18) (dual of [(121, 2), 182, 19]-NRT-code) | [i] | OOA Folding |